THE BIGGEST LITTLE ANTENNA IN THE WORLD

The Navy's VLF antenna at Cutler Maine

CUTLER VLF ANTENNA

- Why A VLF Antenna
- VLF Design Issues
- Antenna Structure
 - Types Of Antennas
 - Trideco Design At Cutler, Me.
 - Towers and Top Load
- Tuning Network
- Ground System
- Deicing
- Transmitter

WHY A VLF SYSTEM?

- With the creation of ballistic missile submarines it became essential to maintain communications
- To avoid detection, nuclear submarines must remain submerged
- VLF provided penetration of seawater 30 to 100 feet because of the very long wavelength
- Very low loss propagation (2 dB/1000 Km)

BALLISTIC MISSILE SUBMARINES

- USS NAUTILUS
- FIRST NUCLEAR-POWERED SUB
- COMMISSIONED 1954
- OPEPRATE SUBMERGED FOR MONTHS

- USS GEORGE WASHINGTON
- FIRST BALLISTIC MISSILE SUB
- 16 POLARIS MISSILES
- COMMISSIONED DEC 1959

US NAVY VLF COMMUNICATION SYSTEM

Very Low Frequency/Low Frequency Site Locations

VLF ANTENNA SYSTEM REQUIREMENTS

- Tunable 14-28 KHz
- Radiated Power 1 MW Guaranteed
- Efficiency >50% (\$500K Penalty)
- Operational Conditions Include 3 In Ice and 175 MPH Winds
- Redundant For Reliability And Maintenance

VERTICAL ANTENNA COMPARISON

- 1.8 MHz (160m) ¼ Wave 131 ft
 .18 MHz (1600m) ¼ Wave 1310 ft
 18 KHz (16000m) ¼ Wave 13,100 ft
- Impractical for land-based antenna
- Some airborne command posts used trailing wire

ANTENNA CONFIGURATIONS

TRIATIC TOP LOADING

TRIDECO TOP LOADING

EXAMPLE OF TRIATIC

FIG.172.—Two of the immense antennæ at Radio Central.

RADIO CENTRAL USED A SET OF TRIATIC ANTENNAS

TRIDECO ANTENNA SIZE

TWO MONOPOLES OCCUPY 2000 ACRES ON A PENNINSULA

- DUAL TRANSMITTER
- HELIX HOUSE CONTAINS TUNER
- TRIDECO TOP LOAD USES 6
 PANELS FOR EACH MONOPOLE

OVERVIEW OF ANTENNA CONFIGURATION

Figure 1. General layout, Cutler Peninsula.

SATELLITE IMAGES

Power Plant 18 MW

Main Tower And Helix House

ANTENNA DESIGN PARAMETERS

17	Six-Panel Mode	Four-Panel Mode
Antenna effective height (m)	140.1 ± 2.8	130.4 ± 2.6
Antenna self resonance (kHz)	40.2	40.0
Antenna static capacitance (nF)	123.9	90.1
Gross resistance (ohms) measured at full power	0.2649	0.2675
Radiation resistance (ohms)	0.1984 ± 0.0077	0.1719 ± 0.0068
Antenna base reactance (ohms)	-j 35.4	-j 50.2
Antenna bandwidth (Hz) measured at low power	137.5	100
Antenna radiation efficiency (%)	74.9 %	64.3 %
Base voltage (kV)	65.5	99.7
Base current (A)	1850	1987
Radiated power (kW)	679	679

Table ES-1. South array antenna measurement results.

EACH ANTENNA CONSISTS OF 13 TOWERS

Towers are 900 to 1000 feet high

TOPLOAD PANEL CONSTRUCTION

Figure 2. Plan view of a typical panel in VLF antenna array.

78000 FEET OF CABLE – 1000000 POUNDS, NOT INCLUDING ICE

Figure 3. VLF Cutler feed-cage and counterweight configuration.

- Counterweights
 Weight 220 Tons
- Panels Can Move With Wind And Ice Load
- Panels Can Be Lowered For Maintenance

Concrete Filled Wheel

TUNING NETWORK- HELIX HOUSE

EACH INSULATOR IS 30 FT LONG TO WITHSTAND 250 KV

TOPLOAD DEICING

DEICING POWER

- Deice One Antenna At A Time
- 1.6 W/Sq In =7.5 Megawatts To Deice
- Diesel Generators Provide 18 Mw

Figure 7. Simplified schematic diagram of one division in deicing mode.

TUNING NETWORK

PANEL PANEL -HANDLE 250 KV AND 1200 **AMPS** EACH LINE REPRESENTS TWO CONDUCTORS IN PARALLEL -VERY LOW LOSS <0.1 OHM DOWN LEADS DOWN LEADS -TUNE ANTENNA OVER 14-28 CONNECTIONS FROM CONNECTIONS FROM KHZ CROSS ARM CROSS ARM BUSHING -HELIX -TUNING VARIOMETER

COUPLING VARIOMETER

Figure 8. Simplified schematic diagram of one division in transmit mode.

100 OHM COAX

TUNING NETWORK- COMPONENTS

TUNING NETWORK-VARIOMETER

TUNING NETWORK-LITZ WIRE

TUNING NETWORK – COMPONENTS

COAXIAL FEED LINE-TRANSMITTER TO HELIX HOUSE

- 100 Ohm Feedline From Transmitter To Helix House
- 1mw Power Capacity
- 100 KV Volts
- 2000 Amps

"Ever see a man standing inside a coax matching section? Chief Electronic Technician Swan, who is in charge of all maintenance at NAA, stands inside the copper-lined concrete tunnel mentioned in the text."

RADIO CENTRAL TUNING NETWORK

FIG. 174.—An immense transmitting tuning coil at Radio Central. Note the size, compared with the man standing at its base.

GROUND SYSTEM

2000 Miles of #6 Copper Wire Cover the Peninsula and Run Into the Sea

DUAL TRANSMITTERS 1MW EACH

Driver stages and final amplifiers along the rear walls, with the "guts" of the units well-protected against accidental access.

TRANSMITTERS

continuation to our nation a accunity.

RADIO CENTRAL TRANSMITTER

FIG. 173.—An Alexanderson high-frequency Alternator, capable of putting 700 amperes of high-frequency current into the antenna.